Vibration Systems with Fractional-Order and Distributed-Order Derivatives Characterizing Viscoinertia
We considered forced harmonic vibration systems with the Liouville–Weyl fractional derivative where the order is between 1 and 2 and with a distributed-order derivative where the Liouville–Weyl fractional derivatives are integrated on the interval [1, 2] with respect to the order. Both types of deri...
Gespeichert in:
Veröffentlicht in: | Fractal and fractional 2021-09, Vol.5 (3), p.67 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We considered forced harmonic vibration systems with the Liouville–Weyl fractional derivative where the order is between 1 and 2 and with a distributed-order derivative where the Liouville–Weyl fractional derivatives are integrated on the interval [1, 2] with respect to the order. Both types of derivatives enhance the viscosity and inertia of the system and contribute to damping and mass, respectively. Hence, such types of derivatives characterize the viscoinertia and represent an “inerter-pot” element. For such vibration systems, we derived the equivalent damping and equivalent mass and gave the equivalent integer-order vibration systems. Particularly, for the distributed-order vibration model where the weight function was taken as an exponential function that involved a parameter, we gave detailed analyses for the weight function, the damping contribution, and the mass contribution. Frequency–amplitude curves and frequency-phase curves were plotted for various coefficients and parameters for the comparison of the two types of vibration models. In the distributed-order vibration system, the weight function of the order enables us to simultaneously involve different orders, whilst the fractional-order model has a single order. Thus, the distributed-order vibration model is more general and flexible than the fractional vibration system. |
---|---|
ISSN: | 2504-3110 2504-3110 |
DOI: | 10.3390/fractalfract5030067 |