COSMOS: a platform for real-time morphology-based, label-free cell sorting using deep learning

Cells are the singular building blocks of life, and a comprehensive understanding of morphology, among other properties, is crucial to the assessment of underlying heterogeneity. We developed Computational Sorting and Mapping of Single Cells (COSMOS), a platform based on Artificial Intelligence (AI)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications biology 2023-09, Vol.6 (1), p.971-971, Article 971
Hauptverfasser: Salek, Mahyar, Li, Nianzhen, Chou, Hou-Pu, Saini, Kiran, Jovic, Andreja, Jacobs, Kevin B., Johnson, Chassidy, Lu, Vivian, Lee, Esther J., Chang, Christina, Nguyen, Phuc, Mei, Jeanette, Pant, Krishna P., Wong-Thai, Amy Y., Smith, Quillan F., Huang, Stephanie, Chow, Ryan, Cruz, Janifer, Walker, Jeff, Chan, Bryan, Musci, Thomas J., Ashley, Euan A., Masaeli, Maddison (Mahdokht)
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cells are the singular building blocks of life, and a comprehensive understanding of morphology, among other properties, is crucial to the assessment of underlying heterogeneity. We developed Computational Sorting and Mapping of Single Cells (COSMOS), a platform based on Artificial Intelligence (AI) and microfluidics to characterize and sort single cells based on real-time deep learning interpretation of high-resolution brightfield images. Supervised deep learning models were applied to characterize and sort cell lines and dissociated primary tissue based on high-dimensional embedding vectors of morphology without the need for biomarker labels and stains/dyes. We demonstrate COSMOS capabilities with multiple human cell lines and tissue samples. These early results suggest that our neural networks embedding space can capture and recapitulate deep visual characteristics and can be used to efficiently purify unlabeled viable cells with desired morphological traits. Our approach resolves a technical gap in the ability to perform real-time deep learning assessment and sorting of cells based on high-resolution brightfield images. Computational Sorting and Mapping of Single Cells (COSMOS) is a cloud-enabled platform that performs real-time cell imaging, analysis, and sorting using deep learning-based morphology representations.
ISSN:2399-3642
2399-3642
DOI:10.1038/s42003-023-05325-9