MF-GCN-LSTM: a cloud-edge distributed framework for key positions prediction in grid projects
In this article, we solve the key positions prediction problem of engineering projects in smart grid, which pays more attention to the spatial-temporal distribution of projects. Many studies show that the projects are affected by multi-dimensional features such as time, space, correlation etc. Howev...
Gespeichert in:
Veröffentlicht in: | Journal of Cloud Computing 2022-12, Vol.11 (1), p.1-14, Article 55 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we solve the key positions prediction problem of engineering projects in smart grid, which pays more attention to the spatial-temporal distribution of projects. Many studies show that the projects are affected by multi-dimensional features such as time, space, correlation etc. However, few work can accurately predict the key positions of projects based on multi-dimensional features. In order to solve this problem, we propose the idea of multi-feature extraction, and make use of the real-world records trace to conduct multi-dimensional modeling. Then we introduce a multi-dimensional features extraction model: Multi-Feature-based GCN-LSTM (MF-GCN-LSTM) to take the effect of time, space and correlation for predicting the key positions of projects. Experiments on different datasets with various project types have proved that our model can complete the key positions prediction task efficiently. Compared with the other traditional method and non-linear models, our model shows higher prediction accuracy and robustness. Moreover, we show that the whole prediction framework MF-GCN-LSTM can be split and deployed in a distributed manner to accelerate the inference of the model under the cloud edge system. |
---|---|
ISSN: | 2192-113X 2192-113X |
DOI: | 10.1186/s13677-022-00310-9 |