On certain non-unique solutions of the Stieltjes moment problem

We construct explicit solutions of a number of Stieltjes moment problems based on moments of the form ${\rho}_{1}^{(r)}(n)=(2rn)!$ and ${\rho}_{2}^{(r)}(n)=[(rn)!]^{2}$, $r=1,2,\dots$, $n=0,1,2,\dots$, \textit{i.e.} we find functions $W^{(r)}_{1,2}(x)>0$ satisfying $\int_{0}^{\infty}x^{n}W^{(r)}_...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics and theoretical computer science 2010-09, Vol.12 no. 2 (2), p.295-306
Hauptverfasser: Penson, K. A., Blasiak, Pawel, Duchamp, Gérard, Horzela, A., Solomon, A. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct explicit solutions of a number of Stieltjes moment problems based on moments of the form ${\rho}_{1}^{(r)}(n)=(2rn)!$ and ${\rho}_{2}^{(r)}(n)=[(rn)!]^{2}$, $r=1,2,\dots$, $n=0,1,2,\dots$, \textit{i.e.} we find functions $W^{(r)}_{1,2}(x)>0$ satisfying $\int_{0}^{\infty}x^{n}W^{(r)}_{1,2}(x)dx = {\rho}_{1,2}^{(r)}(n)$. It is shown using criteria for uniqueness and non-uniqueness (Carleman, Krein, Berg, Pakes, Stoyanov) that for $r>1$ both ${\rho}_{1,2}^{(r)}(n)$ give rise to non-unique solutions. Examples of such solutions are constructed using the technique of the inverse Mellin transform supplemented by a Mellin convolution. We outline a general method of generating non-unique solutions for moment problems generalizing ${\rho}_{1,2}^{(r)}(n)$, such as the product ${\rho}_{1}^{(r)}(n)\cdot{\rho}_{2}^{(r)}(n)$ and $[(rn)!]^{p}$, $p=3,4,\dots$.
ISSN:1365-8050
1462-7264
1365-8050
DOI:10.46298/dmtcs.507