Exploring Bikaverin as Metal Ion Biosensor: A Computational Approach
A computational exploration of fungi produced pigment bikaverin as a biosensor towards bioavailable metal ions is presented. Systematic studies of the optimized ground and excited state geometries were attempted for exploring metal ion binding pocket, comparative binding propensity and optical prope...
Gespeichert in:
Veröffentlicht in: | Acta chimica Slovenica 2019-06, Vol.66 (2), p.351-359 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A computational exploration of fungi produced pigment bikaverin as a biosensor towards bioavailable metal ions is presented. Systematic studies of the optimized ground and excited state geometries were attempted for exploring metal ion binding pocket, comparative binding propensity and optical properties of the bikaverin and its adducts with studied metal ions. The screening of thirteen (13) bioavailable metal ions, revealed a range of binding strength towards bikaverin receptor with Ca2+, Mg2+ and Al3+as the strongest binders. Besides, upon binding to bikaverin receptor an enhancement in its fluorescence intensity was observed in the order Ca2+> Al3+> Mg2+. The computationally predicted selectivity of bikaverin receptor towards Ca2+was experimentally corroborated through the preliminary fluorescence studies. The bikaverin probe showed an enhancement of fluorescence emission in presence of Ca2+ ions in buffered aqueous medium. |
---|---|
ISSN: | 1580-3155 1318-0207 1580-3155 |
DOI: | 10.17344/acsi.2018.4843 |