Hybrid Sparsity Model for Fast Terahertz Imaging
In order to shorten the long-term image acquisition time of the terahertz time domain spectroscopy imaging system while ensuring the imaging quality, a hybrid sparsity model (HSM) is proposed for fast terahertz imaging in this paper, which incorporates both intrinsic sparsity prior and nonlocal self...
Gespeichert in:
Veröffentlicht in: | Micromachines (Basel) 2021-09, Vol.12 (10), p.1181 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In order to shorten the long-term image acquisition time of the terahertz time domain spectroscopy imaging system while ensuring the imaging quality, a hybrid sparsity model (HSM) is proposed for fast terahertz imaging in this paper, which incorporates both intrinsic sparsity prior and nonlocal self-similarity constraints in a unified statistical model. In HSM, a weighted exponentiation shift-invariant wavelet transform is introduced to enhance the sparsity of the terahertz image. Simultaneously, the nonlocal self-similarity by means of the three-dimensional sparsity in the transform domain is exploited to ensure high-quality terahertz image reconstruction. Finally, a new split Bregman-based iteration algorithm is developed to solve the terahertz imaging model more efficiently. Experiments are presented to verify the effectiveness of the proposed approach. |
---|---|
ISSN: | 2072-666X 2072-666X |
DOI: | 10.3390/mi12101181 |