Hybrid Sparsity Model for Fast Terahertz Imaging

In order to shorten the long-term image acquisition time of the terahertz time domain spectroscopy imaging system while ensuring the imaging quality, a hybrid sparsity model (HSM) is proposed for fast terahertz imaging in this paper, which incorporates both intrinsic sparsity prior and nonlocal self...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Micromachines (Basel) 2021-09, Vol.12 (10), p.1181
Hauptverfasser: Ren, Xiaozhen, Bai, Yanwen, Jiang, Yuying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to shorten the long-term image acquisition time of the terahertz time domain spectroscopy imaging system while ensuring the imaging quality, a hybrid sparsity model (HSM) is proposed for fast terahertz imaging in this paper, which incorporates both intrinsic sparsity prior and nonlocal self-similarity constraints in a unified statistical model. In HSM, a weighted exponentiation shift-invariant wavelet transform is introduced to enhance the sparsity of the terahertz image. Simultaneously, the nonlocal self-similarity by means of the three-dimensional sparsity in the transform domain is exploited to ensure high-quality terahertz image reconstruction. Finally, a new split Bregman-based iteration algorithm is developed to solve the terahertz imaging model more efficiently. Experiments are presented to verify the effectiveness of the proposed approach.
ISSN:2072-666X
2072-666X
DOI:10.3390/mi12101181