Analysis of Free Amino Acid Composition and Honey Plant Species in Seven Honey Species in China

Honey is well-known as a food product that is rich in active ingredients and is very popular among consumers. Free amino acids (FAAs) are one of the important nutritional components of honey, which can be used not only as a nutritional indicator of honey but also as an indicator of plant source iden...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foods 2024-03, Vol.13 (7), p.1065
Hauptverfasser: Yang, Jialin, Liu, Yihui, Cui, Zongyan, Wang, Taohong, Liu, Tong, Liu, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Honey is well-known as a food product that is rich in active ingredients and is very popular among consumers. Free amino acids (FAAs) are one of the important nutritional components of honey, which can be used not only as a nutritional indicator of honey but also as an indicator of plant source identification. In this study, the contents of 20 FAAs in seven types of honey from 11 provinces in China were examined for the first time. The 20 FAAs were analyzed by ultra-performance liquid chromatography-mass spectrometry/mass spectrometry (UPLC-MS/MS). By analyzing 93 honey samples from seven types of honey, the FAAs were found to range from 394.4 mg/kg (linden honey) to 1771.7 mg/kg (chaste honey). Proline ranged from 274.55 to 572.48 mg/kg, and methionine was only present in some of the linden honey, chaste honey, acacia honey, and rape honey. Evaluated by amino acid principal component analysis, multifloral grassland honey had the highest overall evaluation score, acacia and jujube honey were the most similar, while chaste honey was the least similar to the other types of honey. In addition, DNA was extracted from 174 Xinjiang grassland honey samples and different plant leaves for PCR and sequencing to identify the species of nectar plants. As a result, 12 families and 25 species of honey plants were identified. The results confirmed the diversity of FAAs in dissimilar types and sources of honey. This study provides a reference for expanding honey quality standards and verifying the authenticity of honey.
ISSN:2304-8158
2304-8158
DOI:10.3390/foods13071065