Gene-level differential analysis at transcript-level resolution

Compared to RNA-sequencing transcript differential analysis, gene-level differential expression analysis is more robust and experimentally actionable. However, the use of gene counts for statistical analysis can mask transcript-level dynamics. We demonstrate that 'analysis first, aggregation se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome Biology 2018-04, Vol.19 (1), p.53-53, Article 53
Hauptverfasser: Yi, Lynn, Pimentel, Harold, Bray, Nicolas L, Pachter, Lior
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Compared to RNA-sequencing transcript differential analysis, gene-level differential expression analysis is more robust and experimentally actionable. However, the use of gene counts for statistical analysis can mask transcript-level dynamics. We demonstrate that 'analysis first, aggregation second,' where the p values derived from transcript analysis are aggregated to obtain gene-level results, increase sensitivity and accuracy. The method we propose can also be applied to transcript compatibility counts obtained from pseudoalignment of reads, which circumvents the need for quantification and is fast, accurate, and model-free. The method generalizes to various levels of biology and we showcase an application to gene ontologies.
ISSN:1474-760X
1474-7596
1474-760X
DOI:10.1186/s13059-018-1419-z