Numerical Study on Flow Field and Abundance Field of a Binary Gas Mixture with Large Mass Number Difference

In study of the flow of an isotopic gas mixture in a rotating cylinder, the isotope approximation method is generally introduced to decouple the flow problem of the mixed gas and the component transport problem by considering the small molecular weight difference. However, the isotope approximation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tong wei su 2023-10, Vol.36 (5), p.557-564
Hauptverfasser: TIAN Songjie, GU Zhiyong, GUO Zixue
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In study of the flow of an isotopic gas mixture in a rotating cylinder, the isotope approximation method is generally introduced to decouple the flow problem of the mixed gas and the component transport problem by considering the small molecular weight difference. However, the isotope approximation is no longer applicable to the flow of a mixed gas with large mass difference in a rotating cylinder, and the coupling of flow and component transport problem is a difficulty in numerical simulation. Taking the normalized mass numbers of 0.93 and 0.07 of a binary gas mixture as the gas under consideration, this paper discusses the calculation method of the physical property coefficients of the binary gas mixture with a large mass difference. The fluid dynamic equations are discretized by a finite difference method, and the coupled flow and component transport equations under strong disturbance are solved by a Newton method modified by a homotopic continuation. The distributions of the flow field and concentration f
ISSN:1000-7512