Eichler–Selberg relations for singular moduli
The Eichler–Selberg trace formula expresses the trace of Hecke operators on spaces of cusp forms as weighted sums of Hurwitz–Kronecker class numbers. We extend this formula to a natural class of relations for traces of singular moduli, where one views class numbers as traces of the constant function...
Gespeichert in:
Veröffentlicht in: | Forum of mathematics. Sigma 2024-01, Vol.12, Article e117 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Eichler–Selberg trace formula expresses the trace of Hecke operators on spaces of cusp forms as weighted sums of Hurwitz–Kronecker class numbers. We extend this formula to a natural class of relations for traces of singular moduli, where one views class numbers as traces of the constant function
$j_0(\tau )=1$
. More generally, we consider the singular moduli for the Hecke system of modular functions
For each
$\nu \geq 0$
and
$m\geq 1$
, we obtain an Eichler–Selberg relation. For
$\nu =0$
and
$m\in \{1, 2\},$
these relations are Kaneko’s celebrated singular moduli formulas for the coefficients of
$j(\tau ).$
For each
$\nu \geq 1$
and
$m\geq 1,$
we obtain a new Eichler–Selberg trace formula for the Hecke action on the space of weight
$2 \nu +2$
cusp forms, where the traces of
$j_m(\tau )$
singular moduli replace Hurwitz–Kronecker class numbers. These formulas involve a new term that is assembled from values of symmetrized shifted convolution L-functions. |
---|---|
ISSN: | 2050-5094 2050-5094 |
DOI: | 10.1017/fms.2024.126 |