Electrical response of lithium niobate and lithium tantalate thin films to modulated thermal radiation

In this work, we studied the pyroelectric activity of thin polycrystalline lithium niobate films fabricated by radio frequency magnetron sputtering and laser ablation, and thin polycrystalline lithium tantalate films fabricated by radio frequency magnetron sputtering. Using the dynamic method of stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fiziko-himičeskie aspekty izučeniâ klasterov, nanostruktur i nanomaterialov (Online) nanostruktur i nanomaterialov (Online), 2022-12 (14), p.82-91
Hauptverfasser: S.I. Gudkov, A.V. Solnyshkin, R.N. Zhukov, D.A. Kiselev
Format: Artikel
Sprache:rus
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we studied the pyroelectric activity of thin polycrystalline lithium niobate films fabricated by radio frequency magnetron sputtering and laser ablation, and thin polycrystalline lithium tantalate films fabricated by radio frequency magnetron sputtering. Using the dynamic method of studying the pyroelectric effect, it was found that all samples have self-polarization that occurs during the post-growth thermal annealing of the structure. An estimate of the pyroelectric coefficient showed that the values of the pyroelectric coefficient of lithium niobate and lithium tantalate thin films are several times lower than the values of the pyroelectric coefficient for bulk crystals of the corresponding materials. This may be due to the fact that the polarization vector of some grains lies in the film plane, as well as to the traps existing in the film volume and at the film/substrate interface, on which charge carriers recombine and do not participate in the generation of the pyroelectric current.
ISSN:2226-4442
2658-4360
DOI:10.26456/pcascnn/2022.14.082