Joining C/C–SiC composite and Ti60 alloy using a semi-solid TiNiCuNb filler
This paper developed an innovative pressure-free contact reaction brazing technique that facilitated joining ceramics at low temperatures. Using this method, a semi-solid TiNiCuNb filler was employed to join C/C–SiC composite and Ti60 alloy. By facilitating elements’ diffusion through the partial li...
Gespeichert in:
Veröffentlicht in: | Journal of materials research and technology 2023-11, Vol.27, p.8073-8083 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper developed an innovative pressure-free contact reaction brazing technique that facilitated joining ceramics at low temperatures. Using this method, a semi-solid TiNiCuNb filler was employed to join C/C–SiC composite and Ti60 alloy. By facilitating elements’ diffusion through the partial liquid of semi-solid TiNiCuNb alloy, Ti could be introduced into this alloy without pressure, and the complete melting was achieved above 950 °C. Based on this, Ti60 alloy was joined to C/C–SiC composite below its β-transus temperature. Significant reaction differences between C/C and SiC with filler were found, mainly due to the different solubility and diffusion characteristics of C and Si in liquid filler. SiC exhibited higher sensitivity to temperature changes and was more prone to overreaction to induce defects. At 1010 °C, the maximum shear strength of 22.5 MPa was obtained due to the moderate reaction of both C/C and SiC with filler. This work contributed to manufacturing lightweight brake systems. |
---|---|
ISSN: | 2238-7854 |
DOI: | 10.1016/j.jmrt.2023.11.101 |