Finding a good shape parameter of RBF to solve PDEs based on the particle swarm optimization algorithm

The present study aims at integrating the Particle Swarm Optimization (PSO) algorithm with Kansa’s method based on meshless collocation methods in order to determine a good shape parameter of Radial Basis Function (RBF) for solving partial differential equations (PDEs). For this purpose, we use a tw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Alexandria engineering journal 2018-12, Vol.57 (4), p.3641-3652
Hauptverfasser: Koupaei, Javad Alikhani, Firouznia, Marjan, Hosseini, Seyed Mohammad Mahdi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present study aims at integrating the Particle Swarm Optimization (PSO) algorithm with Kansa’s method based on meshless collocation methods in order to determine a good shape parameter of Radial Basis Function (RBF) for solving partial differential equations (PDEs). For this purpose, we use a two-staged experimental design. While in the first stage, PSO algorithm was used to determine an optimal shape parameter for the related RBFs, in the second stage, we employed Kansa’s method to estimate the RMS error for specifying approximate solutions. To study the performance of the proposed algorithm, we offer numerical results for two examples of partial differential equations and show the effectiveness of the proposed method. Numerical results demonstrated the performance superiority of the new algorithm model. The findings also indicated that the evolutionary algorithm model is more effective than the golden section search algorithm in finding a good shape parameter of RBF.
ISSN:1110-0168
DOI:10.1016/j.aej.2017.11.024