Application of machine learning risk prediction mathematical model in the diagnosis of Escherichia coli infection in patients with septic shock by cardiovascular color doppler ultrasound
this study was to explore the diagnosis of septic shock patients with Escherichia coli (E. coli) infection based on cardiovascular color Doppler ultrasound (CCDUS) images under the machine learning risk prediction mathematical model (risk prediction model). 120 septic shock patients with Escherichia...
Gespeichert in:
Veröffentlicht in: | Results in physics 2021-07, Vol.26, p.104368, Article 104368 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | this study was to explore the diagnosis of septic shock patients with Escherichia coli (E. coli) infection based on cardiovascular color Doppler ultrasound (CCDUS) images under the machine learning risk prediction mathematical model (risk prediction model). 120 septic shock patients with Escherichia coli (E. coli) infection, admitted to xxx hospital were selected as research subjects, and they were randomly divided into experimental group and control group, including 76 males and 44 females, with an average age of (45.47 ± 11.35) years old. The prediction model, random forest mathematical model (RF model), and feature combination were trained and applied in the CCDUS. The error rate, F1-score, and area under the curve (AUC) were compared. It was found that the prediction effect of the risk prediction model was better (P |
---|---|
ISSN: | 2211-3797 2211-3797 |
DOI: | 10.1016/j.rinp.2021.104368 |