On the Constant Edge Resolvability of Some Unicyclic and Multicyclic Graphs
Assume that G=VG,EG is a connected graph. For a set of vertices WE⊆VG, two edges g1,g2∈EG are distinguished by a vertex x1∈WE, if dx1,g1≠dx1,g2. WE is termed edge metric generator for G if any vertex of WE distinguishes every two arbitrarily distinct edges of graph G. Furthermore, the edge metric di...
Gespeichert in:
Veröffentlicht in: | Journal of mathematics (Hidawi) 2022-01, Vol.2022 (1) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Assume that G=VG,EG is a connected graph. For a set of vertices WE⊆VG, two edges g1,g2∈EG are distinguished by a vertex x1∈WE, if dx1,g1≠dx1,g2. WE is termed edge metric generator for G if any vertex of WE distinguishes every two arbitrarily distinct edges of graph G. Furthermore, the edge metric dimension of G, indicated by edimG, is the cardinality of the smallest WE for G. The edge metric dimensions of the dragon, kayak paddle, cycle with chord, generalized prism, and necklace graphs are calculated in this article. |
---|---|
ISSN: | 2314-4629 2314-4785 |
DOI: | 10.1155/2022/6738129 |