Insecticide resistance of Anopheles sinensis after elimination of malaria in Henan Province, China

Historically, malaria due to Plasmodium vivax has been epidemic in Henan Province, China, with Anopheles sinensis as the main vector. The most effective measures to prevent malaria transmission are based on vector control through the use of insecticides. However, insecticides exert a strong selectiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Parasites & vectors 2023-06, Vol.16 (1), p.180-180, Article 180
Hauptverfasser: He, Zhi-Quan, Hu, Ya-Bo, Wang, Dan, Liu, Yu-Ting, Yang, Cheng-Yun, Qian, Dan, Zhou, Rui-Min, Lu, De-Ling, Li, Su-Hua, Liu, Ying, Zhang, Hong-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Historically, malaria due to Plasmodium vivax has been epidemic in Henan Province, China, with Anopheles sinensis as the main vector. The most effective measures to prevent malaria transmission are based on vector control through the use of insecticides. However, insecticides exert a strong selective pressure on mosquito populations for insecticide resistance. The aim of this study was to investigate the susceptibility profile and population genetic characteristics of An. sinensis to provide basic data and scientific guidance for the study of resistance mechanisms and the control of An. sinensis in Henan Province. Adult Anopheles mosquitoes were collected at sites near local farmers' sheepfolds, pigsties and/or cowsheds located in Pingqiao, Xiangfu, Xiangcheng and Tanghe counties/districts of Henan Province during July-September 2021 for insecticide susceptibility testing. Molecular identification of collected mosquitoes as belonging to genus Anopheles was by PCR, and the frequencies of mutations in the knockdown resistance gene (kdr) and acetylcholinesterase-1 gene (ace-1) were detected using gene amplification. The mitochondrial DNA cytochrome oxidase subunit I (COI) gene was amplified in deltamethrin-resistant and deltamethrin-sensitive mosquitoes to analyze the genetic evolutionary relationship. A total of 1409 Anopheles mosquitoes were identified by molecular identification, of which 1334 (94.68%) were An. sinensis, 28 (1.99%) were An. yatsushiroensis, 43 (3.05%) were An. anthropophagus and four (0.28%) were An. belenrae. The 24-h mortality rates of An. sinensis in Pingqiao, Tanghe, Xiangcheng and Xiangfu counties/districts exposed to deltamethrin were 85.85%, 25.38%, 29.73% and 7.66%, respectively; to beta-cyfluthrin, 36.24%, 70.91%, 34.33% and 3.28%, respectively; to propoxur, 68.39%, 80.60%, 37.62% and 9.29%, respectively; and to malathion, 97.43%, 97.67%, 99.21% and 64.23%, respectively. One mutation, G119S, was detected in the ace-1 gene. The frequencies of the main genotypes were 84.21% of specimens collected in Xiangfu (G/S), 90.63% of speciments collected in Xiangcheng (G/G) and 2.44% of speciments collected in Tanghe (S/S). Significantly higher G119S allele frequencies were observed in both propoxur- and malathion-resistant mosquitoes than in their sensitive counterparts in the Tanghe population (P 
ISSN:1756-3305
1756-3305
DOI:10.1186/s13071-023-05796-z