Cosmologically varying kinetic mixing

A bstract The portal connecting the invisible and visible sectors is one of the most natural explanations of the dark world. However, the early-time dark matter production via the portal faces extremely stringent late-time constraints. To solve such tension, we construct the scalar-controlled kineti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2023-11, Vol.2023 (11), p.31-51, Article 31
Hauptverfasser: Gan, Xucheng, Liu, Di
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract The portal connecting the invisible and visible sectors is one of the most natural explanations of the dark world. However, the early-time dark matter production via the portal faces extremely stringent late-time constraints. To solve such tension, we construct the scalar-controlled kinetic mixing varying with the ultralight CP-even scalar’s cosmological evolution. To realize this and eliminate the constant mixing, we couple the ultralight scalar within 10 − 33 eV ≲ m 0 ≪ eV with the heavy doubly charged messengers and impose the ℤ 2 symmetry under the dark charge conjugation. Via the varying mixing, the keV – MeV dark photon dark matter is produced through the early-time freeze-in when the scalar is misaligned from the origin and free from the late-time exclusions when the scalar does the damped oscillation and dynamically sets the kinetic mixing. We also find that the scalar-photon coupling emerges from the underlying physics, which changes the cosmological history and provides the experimental targets based on the fine-structure constant variation and the equivalence principle violation. To ensure the scalar naturalness, we discretely re-establish the broken shift symmetry by embedding the minimal model into the ℤ N -protected model. When N ~ 10, the scalar’s mass quantum correction can be suppressed much below 10 − 33 eV.
ISSN:1029-8479
1126-6708
1029-8479
DOI:10.1007/JHEP11(2023)031