Smart Grid for Industry Using Multi-Agent Reinforcement Learning

The growing share of renewable power generation leads to increasingly fluctuating and generally rising electricity prices. This is a challenge for industrial companies. However, electricity expenses can be reduced by adapting the energy demand of production processes to the volatile prices on the ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2020-10, Vol.10 (19), p.6900
Hauptverfasser: Roesch, Martin, Linder, Christian, Zimmermann, Roland, Rudolf, Andreas, Hohmann, Andrea, Reinhart, Gunther
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The growing share of renewable power generation leads to increasingly fluctuating and generally rising electricity prices. This is a challenge for industrial companies. However, electricity expenses can be reduced by adapting the energy demand of production processes to the volatile prices on the markets. This approach depicts the new paradigm of energy flexibility to reduce electricity costs. At the same time, using electricity self-generation further offers possibilities for decreasing energy costs. In addition, energy flexibility can be gradually increased by on-site power storage, e.g., stationary batteries. As a consequence, both the electricity demand of the manufacturing system and the supply side, including battery storage, self-generation, and the energy market, need to be controlled in a holistic manner, thus resulting in a smart grid solution for industrial sites. This coordination represents a complex optimization problem, which additionally is highly stochastic due to unforeseen events like machine breakdowns, changing prices, or changing energy availability. This paper presents an approach to controlling a complex system of production resources, battery storage, electricity self-supply, and short-term market trading using multi-agent reinforcement learning (MARL). The results of a case study demonstrate that the developed system can outperform the rule-based reactive control strategy (RCS) frequently used. Although the metaheuristic benchmark based on simulated annealing performs better, MARL enables faster reactions because of the significantly lower computation costs for its own execution.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10196900