Best proximity point results for generalized proximal $Z$-contraction mappings in metric spaces and some applications
In this paper, we define generalized proximal Z-contraction mappings of first and second kind in a metric space (X, d). The existence of best proximity point is shown for the defined mappings under some specific conditions which generalizes and extends some existing results of Olgun et al. [23] and...
Gespeichert in:
Veröffentlicht in: | Boletim da Sociedade Paranaense de Matemática 2024-01, Vol.42, p.1-14 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we define generalized proximal Z-contraction mappings of first and second kind in a metric space (X, d). The existence of best proximity point is shown for the defined mappings under some specific conditions which generalizes and extends some existing results of Olgun et al. [23] and Abbas et al. [1]. Suitable examples are given to justify the derived results. Some applications are also shown via fixed point formulation for such mappings in variational inequality problem and homotopy result. |
---|---|
ISSN: | 0037-8712 2175-1188 |
DOI: | 10.5269/bspm.64145 |