New Physics Agnostic Selections For New Physics Searches

We discuss a model-independent strategy for boosting new physics searches with the help of an unsupervised anomaly detection algorithm. Prior to a search, each input event is preprocessed by the algorithm - a variational autoencoder (VAE). Based on the loss assigned to each event, input data can be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Woźniak, Kinga Anna, Cerri, Olmo, Duarte, Javier M., Möller, Torsten, Ngadiuba, Jennifer, Nguyen, Thong Q., Pierini, Maurizio, Spiropulu, Maria, Vlimant, Jean-Roch
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We discuss a model-independent strategy for boosting new physics searches with the help of an unsupervised anomaly detection algorithm. Prior to a search, each input event is preprocessed by the algorithm - a variational autoencoder (VAE). Based on the loss assigned to each event, input data can be split into a background control sample and a signal enriched sample. Following this strategy, one can enhance the sensitivity to new physics with no assumption on the underlying new physics signature. Our results show that a typical BSM search on the signal enriched group is more sensitive than an equivalent search on the original dataset.
ISSN:2100-014X
2101-6275
2100-014X
DOI:10.1051/epjconf/202024506039