New Physics Agnostic Selections For New Physics Searches
We discuss a model-independent strategy for boosting new physics searches with the help of an unsupervised anomaly detection algorithm. Prior to a search, each input event is preprocessed by the algorithm - a variational autoencoder (VAE). Based on the loss assigned to each event, input data can be...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We discuss a model-independent strategy for boosting new physics searches with the help of an unsupervised anomaly detection algorithm. Prior to a search, each input event is preprocessed by the algorithm - a variational autoencoder (VAE). Based on the loss assigned to each event, input data can be split into a background control sample and a signal enriched sample. Following this strategy, one can enhance the sensitivity to new physics with no assumption on the underlying new physics signature. Our results show that a typical BSM search on the signal enriched group is more sensitive than an equivalent search on the original dataset. |
---|---|
ISSN: | 2100-014X 2101-6275 2100-014X |
DOI: | 10.1051/epjconf/202024506039 |