Experimental Study on the Effects of Alumina Abrasive Particle Behavior in MR Polishing for MEMS Applications
Recently, the magnetorheological (MR) polishing process has been examined asa new ultra-precision polishing technology for micro parts in MEMS applications. In theMR polishing process, the magnetic force plays a dominant role. This method uses MRfluids which contains micro abrasives as a polishing m...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2008-01, Vol.8 (1), p.222-235 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently, the magnetorheological (MR) polishing process has been examined asa new ultra-precision polishing technology for micro parts in MEMS applications. In theMR polishing process, the magnetic force plays a dominant role. This method uses MRfluids which contains micro abrasives as a polishing media. The objective of the presentresearch is to shed light onto the material removal mechanism under various slurryconditions for polishing and to investigate surface characteristics, including shape analysisand surface roughness measurement, of spots obtained from the MR polishing process usingalumina abrasives. A series of basic experiments were first performed to determine theoptimum polishing conditions for BK7 glass using prepared slurries by changing the processparameters, such as wheel rotating speed and electric current. Using the obtained results,groove polishing was then performed and the results are investigated. Outstanding surfaceroughness of Ra=3.8nm was obtained on the BK7 glass specimen. The present resultshighlight the possibility of applying this polishing method to ultra-precision micro partsproduction, especially in MEMS applications. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s8010222 |