IDENTIFYING THREATS IN COMPUTER NETWORK BASED ON MULTILAYER NEURAL NETWORK
Purpose. Currently, there appear more often the reports of penetration into computer networks and attacks on the Web-server. Attacks are divided into the following categories: DoS, U2R, R2L, Probe. The purpose of the article is to identify threats in a computer network based on network traffic param...
Gespeichert in:
Veröffentlicht in: | Nauka ta progres transportu 2018-05, Vol.74 (2(74)), p.114-123 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose. Currently, there appear more often the reports of penetration into computer networks and attacks on the Web-server. Attacks are divided into the following categories: DoS, U2R, R2L, Probe. The purpose of the article is to identify threats in a computer network based on network traffic parameters using neural network technology, which will protect the server. Methodology. The detection of such threats as Back, Buffer_overflow, Quess_password, Ipsweep, Neptune in the computer network is implemented on the basis of analysis and processing of data on the parameters of network connections that use the TCP/IP protocol stack using the 19-1-25-5 neural network configuration in the Fann Explorer program. When simulating the operation of the neural network, a training (430 examples), a testing (200 examples) and a control sample (25 examples) were used, based on an open KDDCUP-99 database of 500000 connection records. Findings. The neural network created on the control sample determined an error of 0.322. It is determined that the configuration network 19-1-25-5 copes well with such attacks as Back, Buffer_overflow and Ipsweep. To detect the attacks of Quess_password and Neptune, the task of 19 network traffic parameters is not enough. Originality. We obtained dependencies of the neural network training time (number of epochs) on the number of neurons in the hidden layer (from 10 to 55) and the number of hidden layers (from 1 to 4). When the number of neurons in the hidden layer increases, the neural network by Batch algorithm is trained almost three times faster than the neural network by Resilient algorithm. When the number of hidden layers increases, the neural network by Resilient algorithm is trained almost twice as fast as that by Incremental algorithm. Practical value. Based on the network traffic parameters, the use of 19-1-25-5 configuration neural network will allow to detect in real time the computer network threats Back, Buffer_overflow, Quess_password, Ipsweep, Neptune and to perform appropriate monitoring.
Мета. Останнім часом все частіше з’являються повідомлення про проникнення в комп’ютерні мережі та атаки на Web-cервери. Атаки поділяють на наступні категорії: DoS, U2R, R2L, Probe. Метою статті є виявлення загроз у комп’ютерній мережі на основі параметрів мережного трафіка з використанням нейромережної технології, що дозволить захистити сервер. Методика. Виявлення в комп’ютерній мережі таких загроз, як Back, Buffer_overflow, Quess_password, |
---|---|
ISSN: | 2307-3489 2307-6666 |
DOI: | 10.15802/stp2018/130797 |