Leucinostatins from fungal extracts block malaria transmission to mosquitoes

Malaria is a mosquito-transmitted disease that kills more than half a million people annually. The lack of effective malaria vaccines and recently increasing malaria cases urge innovative approaches to prevent malaria. Previously, we reported that the extract from the soil-dwelling fungus Purpureoci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Parasites & vectors 2024-09, Vol.17 (1), p.401-401, Article 401
Hauptverfasser: Niu, Guodong, Wang, Xiaohong, Gao, Wenda, Cui, Liwang, Li, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Malaria is a mosquito-transmitted disease that kills more than half a million people annually. The lack of effective malaria vaccines and recently increasing malaria cases urge innovative approaches to prevent malaria. Previously, we reported that the extract from the soil-dwelling fungus Purpureocillium lilacinum, a common fungus from the soil, reduced Plasmodium falciparum oocysts in Anopheles gambiae midguts after mosquitoes contacted the treated surface before feeding. We used liquid chromatography to fraction fungal crude extract and tract the active fraction using a contact-wise approach and standard membrane feeding assays. The purified small molecules were analyzed using precise mass spectrometry and tandem mass spectrometry. We isolated four active small molecules from P. lilacinum and determined them as leucinostatin A, B, A2, and B2. Pre-exposure of mosquitoes via contact with very low-concentration leucinostatin A significantly reduced the number of oocysts. The half-maximal response or inhibition concentration (EC ) via pre-exposure was 0.7 mg/m , similar to atovaquone but lower than other known antimalarials. The inhibitory effect of leucinostatin A against P. falciparum during intraerythrocytic development, gametogenesis, sporogonic development, and ookinete formation, with the exception of oocyst development, suggests that leucinostatins play a part during parasite invasion of new cells. Leucinostatins, secondary metabolites from P. lilacinum disrupt malaria development, particular transmission to mosquitoes by contact. The contact-wise malaria control as a nonconventional approach is highly needed in malaria-endemic areas.
ISSN:1756-3305
1756-3305
DOI:10.1186/s13071-024-06450-y