N-Acetyltransferase 9 ameliorates Aβ42-mediated neurodegeneration in the Drosophila eye
Alzheimer’s disease (AD), a progressive neurodegenerative disorder, manifests as accumulation of amyloid-beta-42 (Aβ42) plaques and intracellular accumulation of neurofibrillary tangles (NFTs) that results in microtubule destabilization. Targeted expression of human Aβ42 ( GMR > Aβ42 ) in devel...
Gespeichert in:
Veröffentlicht in: | Cell death & disease 2023-07, Vol.14 (7), p.478-478, Article 478 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Alzheimer’s disease (AD), a progressive neurodegenerative disorder, manifests as accumulation of amyloid-beta-42 (Aβ42) plaques and intracellular accumulation of neurofibrillary tangles (NFTs) that results in microtubule destabilization. Targeted expression of human Aβ42 (
GMR
>
Aβ42
) in developing
Drosophila
eye retinal neurons results in Aβ42 plaque(s) and mimics AD-like extensive neurodegeneration. However, there remains a gap in our understanding of the underlying mechanism(s) for Aβ42-mediated neurodegeneration. To address this gap in information, we conducted a forward genetic screen, and identified N-acetyltransferase 9 (Mnat9) as a genetic modifier of GMR > Aβ42 neurodegenerative phenotype. Mnat9 is known to stabilize microtubules by inhibiting c-Jun-N- terminal kinase (JNK) signaling. We found that gain-of-function of
Mnat9
rescues
GMR
>
Aβ42
mediated neurodegenerative phenotype whereas loss-of-function of
Mnat9
exhibits the converse phenotype of enhanced neurodegeneration. Here, we propose a new neuroprotective function of Mnat9 in downregulating the JNK signaling pathway to ameliorate Aβ42-mediated neurodegeneration, which is independent of its acetylation activity. Transgenic flies expressing human NAT9 (hNAT9), also suppresses Aβ42-mediated neurodegeneration thereby suggesting functional conservation in the interaction of fly Mnat9 or hNAT9 with JNK-mediated neurodegeneration. These studies add to the repertoire of molecular mechanisms that mediate cell death response following accumulation of Aβ42 and may provide new avenues for targeting neurodegeneration. |
---|---|
ISSN: | 2041-4889 2041-4889 |
DOI: | 10.1038/s41419-023-05973-z |