Mussel-Inspired Surface Modification of α-Zirconium Phosphate Nanosheets for Anchoring Efficient and Reusable Ultrasmall Au Nanocatalysts
The shortage of powerful functionalities on scalable α-zirconium phosphate (ZrP) materials blocks the facile preparation of highly dispersed and immobilized metal nanocatalysts. We herein present a mild and facile mussel-inspired strategy based on polydopamine (PDA) for the surface modification of Z...
Gespeichert in:
Veröffentlicht in: | Nanomaterials (Basel, Switzerland) Switzerland), 2022-09, Vol.12 (19), p.3339 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The shortage of powerful functionalities on scalable α-zirconium phosphate (ZrP) materials blocks the facile preparation of highly dispersed and immobilized metal nanocatalysts. We herein present a mild and facile mussel-inspired strategy based on polydopamine (PDA) for the surface modification of ZrP, and hence, the generation of powerful functionalities at a high density for the straightforward reduction of chloroauric acid to Au nanoparticles (AuNPs) and the immobilization of AuNPs. The resulting ternary ZrP@PDA/Au exhibited ultra-small AuNPs with a particle size of around 6.5 nm, as estimated based on TEM images. Consequently, the ZrP@PDA/Au catalyst showed significant activity in the catalytic conversion of 4-nitrophenol (4NP) to 4-aminophenol (4AP), a critical transformation reaction in turning the hazard into valuable intermediates for drug synthesis. The PDA was demonstrated to play a critical role in the fabrication of the highly efficient ZrP@PDA/Au catalyst, far outperforming the ZrP/Au counterpart. The turnover frequency (TOF) achieved by the ZrP@PDA/Au reached as high as 38.10 min−1, much higher than some reported noble metal-based catalysts. In addition, the ZrP@PDA/Au showed high stability and reusability, of which the catalytic efficiency was not significantly degraded after prolonged storage in solution. |
---|---|
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano12193339 |