Practical parameter identifiability and handling of censored data with Bayesian inference in mathematical tumour models

Mechanistic mathematical models (MMs) are a powerful tool to help us understand and predict the dynamics of tumour growth under various conditions. In this work, we use 5 MMs with an increasing number of parameters to explore how certain (often overlooked) decisions in estimating parameters from dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPJ systems biology and applications 2024-08, Vol.10 (1), p.89-12
Hauptverfasser: Porthiyas, Jamie, Nussey, Daniel, Beauchemin, Catherine A. A., Warren, Donald C., Quirouette, Christian, Wilkie, Kathleen P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mechanistic mathematical models (MMs) are a powerful tool to help us understand and predict the dynamics of tumour growth under various conditions. In this work, we use 5 MMs with an increasing number of parameters to explore how certain (often overlooked) decisions in estimating parameters from data of experimental tumour growth affect the outcome of the analysis. In particular, we propose a framework for including tumour volume measurements that fall outside the upper and lower limits of detection, which are normally discarded. We demonstrate how excluding censored data results in an overestimation of the initial tumour volume and the MM-predicted tumour volumes prior to the first measurements, and an underestimation of the carrying capacity and the MM-predicted tumour volumes beyond the latest measurable time points. We show in which way the choice of prior for the MM parameters can impact the posterior distributions, and illustrate that reporting the most likely parameters and their 95% credible interval can lead to confusing or misleading interpretations. We hope this work will encourage others to carefully consider choices made in parameter estimation and to adopt the approaches we put forward herein.
ISSN:2056-7189
2056-7189
DOI:10.1038/s41540-024-00409-6