Antioxidant defense system in the prefrontal cortex of chronically stressed rats treated with lithium

This study aimed to investigate the effects of lithium treatment on gene expression and activity of the prefrontal antioxidant enzymes: copper, zinc superoxide dismutase (SOD1), manganes superoxide dismutase (SOD2), catalase (CAT), and glutathione peroxidase (GPx) in animals exposed to chronic restr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PeerJ (San Francisco, CA) CA), 2022-03, Vol.10, p.e13020-e13020, Article e13020
Hauptverfasser: Pejic, Snezana, Pajovic, Snezana B, Todorovic, Ana, Vujovic, Predrag, Stojiljkovic, Vesna, Gavrilovic, Ljubica, Popovic, Natasa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aimed to investigate the effects of lithium treatment on gene expression and activity of the prefrontal antioxidant enzymes: copper, zinc superoxide dismutase (SOD1), manganes superoxide dismutase (SOD2), catalase (CAT), and glutathione peroxidase (GPx) in animals exposed to chronic restraint stress (CRS). The investigated parameters were quantified using real-time RT-PCR, Western blot analyses, and assays of enzyme activities. We found that lithium treatment decreased gene expression of SOD2, as well as the activities of SOD1 and SOD2 in chronically stressed rats to the levels found in unstressed animals. However, lithium treatment in animals exposed to CRS increased prefrontal GPx activity to the levels found in unstressed animals. These findings confirm that treatment with lithium induced the modulation of prefrontal antioxidant status in chronically stressed rats. Our results may be very important in biomedical research for understanding the role of lithium in maintaining the stability of prefrontal antioxidant defense system in neuropsychiatric disorders caused by chronic stress.
ISSN:2167-8359
2167-8359
DOI:10.7717/peerj.13020