Theoretical Analysis (Convergence and Stability) of a Difference Approximation for Multiterm Time Fractional Convection Diffusion-Wave Equations with Delay

In this paper, we introduce a high order numerical approximation method for convection diffusion wave equations armed with a multiterm time fractional Caputo operator and a nonlinear fixed time delay. A temporal second-order scheme which is behaving linearly is derived and analyzed for the problem u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2020-10, Vol.8 (10), p.1696
Hauptverfasser: Hendy, A. S., De Staelen, R. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we introduce a high order numerical approximation method for convection diffusion wave equations armed with a multiterm time fractional Caputo operator and a nonlinear fixed time delay. A temporal second-order scheme which is behaving linearly is derived and analyzed for the problem under consideration based on a combination of the formula of L2−1σ and the order reduction technique. By means of the discrete energy method, convergence and stability of the proposed compact difference scheme are estimated unconditionally. A numerical example is provided to illustrate the theoretical results.
ISSN:2227-7390
2227-7390
DOI:10.3390/math8101696