Fully automated measurement on coronal alignment of lower limbs using deep convolutional neural networks on radiographic images

A deep convolutional neural network (DCNN) system is proposed to measure the lower limb parameters of the mechanical lateral distal femur angle (mLDFA), medial proximal tibial angle (MPTA), lateral distal tibial angle (LDTA), joint line convergence angle (JLCA), and mechanical axis of the lower limb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC musculoskeletal disorders 2022-09, Vol.23 (1), p.869-869, Article 869
Hauptverfasser: Meng, Xianghong, Wang, Zhi, Ma, Xinlong, Liu, Xiaoming, Ji, Hong, Cheng, Jie-Zhi, Dong, Pei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A deep convolutional neural network (DCNN) system is proposed to measure the lower limb parameters of the mechanical lateral distal femur angle (mLDFA), medial proximal tibial angle (MPTA), lateral distal tibial angle (LDTA), joint line convergence angle (JLCA), and mechanical axis of the lower limbs. Standing X-rays of 1000 patients' lower limbs were examined for the DCNN and assigned to training, validation, and test sets. A coarse-to-fine network was employed to locate 20 key landmarks on both limbs that first recognised the regions of hip, knee, and ankle, and subsequently outputted the key points in each sub-region from a full-length X-ray. Finally, information from these key landmark locations was used to calculate the above five parameters. The DCNN system showed high consistency (intraclass correlation coefficient > 0.91) for all five lower limb parameters. Additionally, the mean absolute error (MAE) and root mean squared error (RMSE) of all angle predictions were lower than 3° for both the left and right limbs. The MAE of the mechanical axis of the lower limbs was 1.124 mm and 1.416 mm and the RMSE was 1.032 mm and 1.321 mm, for the right and left limbs, respectively. The measurement time of the DCNN system was 1.8 ± 1.3 s, which was significantly shorter than that of experienced radiologists (616.8 ± 48.2 s, t = -180.4, P 
ISSN:1471-2474
1471-2474
DOI:10.1186/s12891-022-05818-4