Transcriptome and Phytochemical Analysis Reveals the Alteration of Plant Hormones, Characteristic Metabolites, and Related Gene Expression in Tea (Camellia sinensis L.) Leaves During Withering
Plant hormones play an important role in the chemical metabolism of postharvest plants. However, alterations in plant hormones of postharvest tea and their potential modulation of quality-related metabolites are unknown. In this study, the dynamic alterations of abscisic acid (ABA), salicylic acid (...
Gespeichert in:
Veröffentlicht in: | Plants (Basel) 2020-02, Vol.9 (2), p.204, Article 204 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Plant hormones play an important role in the chemical metabolism of postharvest plants. However, alterations in plant hormones of postharvest tea and their potential modulation of quality-related metabolites are unknown. In this study, the dynamic alterations of abscisic acid (ABA), salicylic acid (SA), jasmonic acid (JA), and critical metabolites, such as catechins, theanine, and caffeine, in tea leaves were analyzed during withering from 0 to 24 h. It was found that the ABA content increased from 0 to 9 h but decreased thereafter, JA continuously increased, and the SA content showed no significant change. With the exception of gallocatechin (GC) and epicatechin (EC), the amounts of other critical components were significantly reduced at 24 h. Transcriptome analysis showed that compared with 0 h, 2256, 3654, and 1275 differentially expressed genes (DEGs) were identified at 9, 15, and 24 h, respectively. For all comparisons, DEGs corresponding to the pathways of "phenylalanine, tyrosine, and tryptophan biosynthesis" and "phenylalanine metabolism", involved in the biosynthesis of catechins, were significantly enriched. Weighted correlation network analysis (WGCNA) of co-expression genes indicated that many of the modules were only correlated with a specific trait during the withering process; the dark olive-green module, however, was correlated with two traits, ABA and theanine. Our study indicates that withering induced dramatic alterations in gene transcription as well as levels of hormones (ABA, JA, and SA) and important components, and that ABA regulated theanine metabolism during this process. |
---|---|
ISSN: | 2223-7747 2223-7747 |
DOI: | 10.3390/plants9020204 |