The octagon as a determinant

A bstract The computation of a certain class of four-point functions of heavily charged BPS operators boils down to the computation of a special form factor — the octagon. In this paper, which is an extended version of the short note [1], we derive a non-perturbative formula for the square of the oc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2019-11, Vol.2019 (11), p.1-27, Article 178
Hauptverfasser: Kostov, Ivan, Petkova, Valentina B., Serban, Didina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract The computation of a certain class of four-point functions of heavily charged BPS operators boils down to the computation of a special form factor — the octagon. In this paper, which is an extended version of the short note [1], we derive a non-perturbative formula for the square of the octagon as the determinant of a semi-infinite skew-symmetric matrix. We show that perturbatively in the weak coupling limit the octagon is given by a determinant constructed from the polylogarithms evaluating ladder Feynman graphs. We also give a simple operator representation of the octagon in terms of a vacuum expectation value of massless free bosons or fermions living in the rapidity plane.
ISSN:1029-8479
1126-6708
1029-8479
DOI:10.1007/JHEP11(2019)178