Combinatorial Analysis of Secretory Immunoglobulin A (sIgA) Expression in Plants
Delivery of secretory immunoglobulin A (sIgA) to mucosal surfaces as a passive immunotherapy agent is a promising strategy to prevent infectious diseases. Recombinant sIgA production in plants requires the co-expression of four transcriptional units encoding the light chain (LC), heavy chain (HC), j...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2013-03, Vol.14 (3), p.6205-6222 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Delivery of secretory immunoglobulin A (sIgA) to mucosal surfaces as a passive immunotherapy agent is a promising strategy to prevent infectious diseases. Recombinant sIgA production in plants requires the co-expression of four transcriptional units encoding the light chain (LC), heavy chain (HC), joining chain (JC) and secretory component (SC). As a way to optimize sIgA production in plants, we tested the combinatorial expression of 16 versions of a human sIgA against the VP8* rotavirus antigen in Nicotiana benthamiana, using the recently developed GoldenBraid multigene assembly system. Each sIgA version was obtained by combining one of the two types of HC (α1 and α2) with one of the two LC types (k and λ) and linking or not a KDEL peptide to the HC and/or SC. From the analysis of the anti-VP8* activity, it was concluded that those sIgA versions carrying HCα1 and LCλ provided the highest yields. Moreover, ER retention significantly increased antibody production, particularly when the KDEL signal was linked to the SC. Maximum expression levels of 32.5 μg IgA/g fresh weight (FW) were obtained in the best performing combination, with an estimated 33% of it in the form of a secretory complex. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms14036205 |