A new S-type eigenvalue inclusion set for tensors and its applications
In this paper, a new S -type eigenvalue localization set for a tensor is derived by dividing N = { 1 , 2 , … , n } into disjoint subsets S and its complement. It is proved that this new set is sharper than those presented by Qi (J. Symb. Comput. 40:1302-1324, 2005 ), Li et al. (Numer. Linear Algebra...
Gespeichert in:
Veröffentlicht in: | Journal of inequalities and applications 2016-10, Vol.2016 (1), p.254-19, Article 254 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a new
S
-type eigenvalue localization set for a tensor is derived by dividing
N
=
{
1
,
2
,
…
,
n
}
into disjoint subsets
S
and its complement. It is proved that this new set is sharper than those presented by Qi (J. Symb. Comput. 40:1302-1324,
2005
), Li
et al.
(Numer. Linear Algebra Appl. 21:39-50,
2014
) and Li
et al.
(Linear Algebra Appl. 481:36-53,
2015
). As applications of the results, new bounds for the spectral radius of nonnegative tensors and the minimum
H
-eigenvalue of strong
M
-tensors are established, and we prove that these bounds are tighter than those obtained by Li
et al.
(Numer. Linear Algebra Appl. 21:39-50,
2014
) and He and Huang (J. Inequal. Appl. 2014:114,
2014
). |
---|---|
ISSN: | 1025-5834 1029-242X 1029-242X |
DOI: | 10.1186/s13660-016-1200-3 |