A new S-type eigenvalue inclusion set for tensors and its applications

In this paper, a new S -type eigenvalue localization set for a tensor is derived by dividing N = { 1 , 2 , … , n } into disjoint subsets S and its complement. It is proved that this new set is sharper than those presented by Qi (J. Symb. Comput. 40:1302-1324, 2005 ), Li et al. (Numer. Linear Algebra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of inequalities and applications 2016-10, Vol.2016 (1), p.254-19, Article 254
Hauptverfasser: Huang, Zheng-Ge, Wang, Li-Gong, Xu, Zhong, Cui, Jing-Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a new S -type eigenvalue localization set for a tensor is derived by dividing N = { 1 , 2 , … , n } into disjoint subsets S and its complement. It is proved that this new set is sharper than those presented by Qi (J. Symb. Comput. 40:1302-1324, 2005 ), Li et al. (Numer. Linear Algebra Appl. 21:39-50, 2014 ) and Li et al. (Linear Algebra Appl. 481:36-53, 2015 ). As applications of the results, new bounds for the spectral radius of nonnegative tensors and the minimum H -eigenvalue of strong M -tensors are established, and we prove that these bounds are tighter than those obtained by Li et al. (Numer. Linear Algebra Appl. 21:39-50, 2014 ) and He and Huang (J. Inequal. Appl. 2014:114, 2014 ).
ISSN:1025-5834
1029-242X
1029-242X
DOI:10.1186/s13660-016-1200-3