Quantum interference between transverse spatial waveguide modes

Integrated quantum optics has the potential to markedly reduce the footprint and resource requirements of quantum information processing systems, but its practical implementation demands broader utilization of the available degrees of freedom within the optical field. To date, integrated photonic qu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2017-01, Vol.8 (1), p.14010-14010, Article 14010
Hauptverfasser: Mohanty, Aseema, Zhang, Mian, Dutt, Avik, Ramelow, Sven, Nussenzveig, Paulo, Lipson, Michal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Integrated quantum optics has the potential to markedly reduce the footprint and resource requirements of quantum information processing systems, but its practical implementation demands broader utilization of the available degrees of freedom within the optical field. To date, integrated photonic quantum systems have primarily relied on path encoding. However, in the classical regime, the transverse spatial modes of a multi-mode waveguide have been easily manipulated using the waveguide geometry to densely encode information. Here, we demonstrate quantum interference between the transverse spatial modes within a single multi-mode waveguide using quantum circuit-building blocks. This work shows that spatial modes can be controlled to an unprecedented level and have the potential to enable practical and robust quantum information processing. Practical implementations of quantum photonic circuits consist primarily of large waveguide networks to path-encode information. Here, Mohanty et al . demonstrate quantum interference between transverse spatial modes in a single silicon nitride waveguide, enabling robust quantum information processing.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms14010