Real-time near infrared artificial intelligence using scalable non-expert crowdsourcing in colorectal surgery

Surgical artificial intelligence (AI) has the potential to improve patient safety and clinical outcomes. To date, training such AI models to identify tissue anatomy requires annotations by expensive and rate-limiting surgical domain experts. Herein, we demonstrate and validate a methodology to obtai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPJ digital medicine 2024-04, Vol.7 (1), p.99-99, Article 99
Hauptverfasser: Skinner, Garrett, Chen, Tina, Jentis, Gabriel, Liu, Yao, McCulloh, Christopher, Harzman, Alan, Huang, Emily, Kalady, Matthew, Kim, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Surgical artificial intelligence (AI) has the potential to improve patient safety and clinical outcomes. To date, training such AI models to identify tissue anatomy requires annotations by expensive and rate-limiting surgical domain experts. Herein, we demonstrate and validate a methodology to obtain high quality surgical tissue annotations through crowdsourcing of non-experts, and real-time deployment of multimodal surgical anatomy AI model in colorectal surgery.
ISSN:2398-6352
2398-6352
DOI:10.1038/s41746-024-01095-8