Haploinsufficiency in the ANKS1B gene encoding AIDA-1 leads to a neurodevelopmental syndrome

Neurodevelopmental disorders, including autism spectrum disorder, have complex polygenic etiologies. Single-gene mutations in patients can help define genetic factors and molecular mechanisms underlying neurodevelopmental disorders. Here we describe individuals with monogenic heterozygous microdelet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-08, Vol.10 (1), p.3529-15, Article 3529
Hauptverfasser: Carbonell, Abigail U., Cho, Chang Hoon, Tindi, Jaafar O., Counts, Pamela A., Bates, Juliana C., Erdjument-Bromage, Hediye, Cvejic, Svetlana, Iaboni, Alana, Kvint, Ifat, Rosensaft, Jenny, Banne, Ehud, Anagnostou, Evdokia, Neubert, Thomas A., Scherer, Stephen W., Molholm, Sophie, Jordan, Bryen A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neurodevelopmental disorders, including autism spectrum disorder, have complex polygenic etiologies. Single-gene mutations in patients can help define genetic factors and molecular mechanisms underlying neurodevelopmental disorders. Here we describe individuals with monogenic heterozygous microdeletions in ANKS1B , a predicted risk gene for autism and neuropsychiatric diseases. Affected individuals present with a spectrum of neurodevelopmental phenotypes, including autism, attention-deficit hyperactivity disorder, and speech and motor deficits. Neurons generated from patient-derived induced pluripotent stem cells demonstrate loss of the ANKS1B -encoded protein AIDA-1, a brain-specific protein highly enriched at neuronal synapses. A transgenic mouse model of Anks1b haploinsufficiency recapitulates a range of patient phenotypes, including social deficits, hyperactivity, and sensorimotor dysfunction. Identification of the AIDA-1 interactome using quantitative proteomics reveals protein networks involved in synaptic function and the etiology of neurodevelopmental disorders. Our findings formalize a link between the synaptic protein AIDA-1 and a rare, previously undefined genetic disease we term ANKS1B haploinsufficiency syndrome. Understanding of the genetic factors and molecular mechanisms underlying neurodevelopmental disorders remains incomplete. In this study, authors show that microdeletions in the gene ANKS1B lead to loss of the neuronal synapse-enriched protein AIDA-1 and to a novel neurodevelopmental syndrome
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-11437-w