COVID-19 Detection Using Deep Convolutional Neural Networks and Binary Differential Algorithm-Based Feature Selection from X-Ray Images
The new COVID-19 is rapidly spreading and has already claimed the lives of numerous people. The virus is highly destructive to the human lungs, and early detection is critical. As a result, this paper presents a hybrid approach based on deep convolutional neural networks that are very effective tool...
Gespeichert in:
Veröffentlicht in: | Complexity (New York, N.Y.) N.Y.), 2021, Vol.2021 (1), Article 9973277 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The new COVID-19 is rapidly spreading and has already claimed the lives of numerous people. The virus is highly destructive to the human lungs, and early detection is critical. As a result, this paper presents a hybrid approach based on deep convolutional neural networks that are very effective tools for image classification. The feature vectors were extracted from the images using a deep convolutional neural network, and the binary differential metaheuristic algorithm was used to select the most valuable features. The SVM classifier was then given these optimized features. For the study, a database containing images from three categories, including COVID-19, pneumonia, and a healthy category, included 1092 X-ray samples, was used. The proposed method achieved a 99.43% accuracy, a 99.16% sensitivity, and a 99.57% specificity. Our findings indicate that the proposed method outperformed recent studies on COVID-19 detection using X-ray images. |
---|---|
ISSN: | 1076-2787 1099-0526 |
DOI: | 10.1155/2021/9973277 |