Feasibility of Automatic Seed Generation Applied to Cardiac MRI Image Analysis

We present a method of using interactive image segmentation algorithms to reduce specific image segmentation problems to the task of finding small sets of pixels identifying the regions of interest. To this end, we empirically show the feasibility of automatically generating seeds for GrowCut, a pop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2020-09, Vol.8 (9), p.1511
Hauptverfasser: Mărginean, Radu, Andreica, Anca, Dioşan, Laura, Bálint, Zoltán
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a method of using interactive image segmentation algorithms to reduce specific image segmentation problems to the task of finding small sets of pixels identifying the regions of interest. To this end, we empirically show the feasibility of automatically generating seeds for GrowCut, a popular interactive image segmentation algorithm. The principal contribution of our paper is the proposal of a method for automating the seed generation method for the task of whole-heart segmentation of MRI scans, which achieves competitive unsupervised results (0.76 Dice on the MMWHS dataset). Moreover, we show that segmentation performance is robust to seeds with imperfect precision, suggesting that GrowCut-like algorithms can be applied to medical imaging tasks with little modeling effort.
ISSN:2227-7390
2227-7390
DOI:10.3390/math8091511