Progress on Azadirachta indica Based Biopesticides in Replacing Synthetic Toxic Pesticides

Over the years, extensive use of commercially available synthetic pesticides against phytophagous insects has led to their bioaccumulation in the environment causing increased resistance and reduction in soil biodiversity. Further, 90% of the applied pesticides enter the various environmental resour...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in plant science 2017-05, Vol.8, p.610-610
Hauptverfasser: Chaudhary, Suman, Kanwar, Rupinder K, Sehgal, Alka, Cahill, David M, Barrow, Colin J, Sehgal, Rakesh, Kanwar, Jagat R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Over the years, extensive use of commercially available synthetic pesticides against phytophagous insects has led to their bioaccumulation in the environment causing increased resistance and reduction in soil biodiversity. Further, 90% of the applied pesticides enter the various environmental resources as a result of run-off, exposing the farmers as well as consumers of the agricultural produce to severe health issues. Therefore, growing attention has been given toward the development of alternate environmentally friendly pesticides/insecticides that would aid an efficient pest management system and also prevent chronic exposures leading to diseases. One such strategy is, the use of neem plant's (Binomial name: ) active ingredients which exhibit agro-medicinal properties conferring insecticidal as well as immunomodulatory and anti-cancer properties. The most prominent constituent of neem is azadirachtin, which has been established as a pivotal insecticidal ingredient. It acts as an antifeedant, repellent, and repugnant agent and induces sterility in insects by preventing oviposition and interrupting sperm production in males. This review discusses, key neem pesticidal components, their active functional ingredients along with recent strategies on employing nanocarriers, to provide controlled release of the active ingredients and to improve their stability and sustainability.
ISSN:1664-462X
1664-462X
DOI:10.3389/fpls.2017.00610