Adverse Drug Reaction Detection in Social Media by Deep Learning Methods

Objective Health-related studies have been recently at the heart attention of the media. Social media, such as Twitter, has become a valuable online tool to describe the early detection of various adverse drug reactions (ADRs). Different medications have adverse effects on various cells and tissues,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell journal (Yakhteh) 2020, Vol.22 (3), p.319-324
Hauptverfasser: Rezaei, Zahra, Eslami, Behnaz, Chavoshinejad, Ramyar, Totonchi, Mehdi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objective Health-related studies have been recently at the heart attention of the media. Social media, such as Twitter, has become a valuable online tool to describe the early detection of various adverse drug reactions (ADRs). Different medications have adverse effects on various cells and tissues, sometimes more than one cell population would be adversely affected. These types of side effect are occasionally associated with the direct or indirect influence of prescribed drugs but do not have general unfavorable mutagenic consequences on patients. This study aimed to demonstrate a quick and accurate method to collect and classify information based on the distribution of approved data on Twitter. Materials and Methods In this classification method, we selected "ask a patient" dataset and combination of Twitter "Ask a Patient" datasets that comprised of 6,623, 26,934, and 11,623 reviews. We used deep learning methods with the word2vec to classify ADR comments posted by the users and present an architecture by HAN, FastText, and CNN. Results Natural language processing (NLP) deep learning is able to address more advanced peculiarity in learning information compared to other types of machine learning. Moreover, the current study highlighted the advantage of incorporating various semantic features, including topics and concepts. Conclusion Our approach predicts drug safety with the accuracy of 93% (the combination of Twitter and "Ask a Patient" datasets) in a binary manner. Despite the apparent benefit of various conventional classifiers, deep learning- based text classification methods seem to be precise and influential tools to detect ADR.
ISSN:2228-5806
2228-5814
DOI:10.22074/cellj.2020.6615