Ansys-based structural analysis study of elevated spherical tank exposed to earthquake

Damage of elevated tanks during earthquakes can jeopardize the supply of drinking water and causes significant economic losses. Therefore, seismic analysis of tanks containing liquids requires special consideration. Knowledge of liquid hydrodynamic pressures developed during an earthquake is importa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering and Technology Journal 2021-06, Vol.39 (6), p.870-883
Hauptverfasser: Khafaji, Mahmud S., Salman, Muna A., Muhammad, Ahlam S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Damage of elevated tanks during earthquakes can jeopardize the supply of drinking water and causes significant economic losses. Therefore, seismic analysis of tanks containing liquids requires special consideration. Knowledge of liquid hydrodynamic pressures developed during an earthquake is important for tank design. This paper aims to verify the dynamic reaction of structural systems of spherical elevated steel tanks containing water, and determine the natural frequencies that contribute to the physical response, as well as seismic analysis of the tank. A three dimensional Finite Element Model was developed to identify the main parameters involved in this response for three different fullness ratio (0.00% , 53.30% and 71.11% ) using the ANSYS software. The model was implemented and validated based on the results of a previously conducted experimental study. Moreover, it was analyzed under the impact of the most severe earthquake that Iraq was exposed to in 2017 with a magnitude of 7.2 on the Richter scale. The results showed a very good agreement in natural frequency with a discrepancy (root mean square error) of 2% (0.05 Hz), 6.9% (0.15 Hz) and 9.5% (0.2 Hz) for the fullness ratio 0% , 53.3% and 71.11% , respectively In addition, the selected element type and the method of analysis are applicable. Moreover, results of displacement and stresses from earthquake analysis indicated that the spherical tank could lose stability in time 1.4 seconds of the proposed time for the worst part of the earthquake, when displacement records highest values in the direction of earthquake for the tank body at chosen points in the top, middle, and bottom of the tank body which were almost equally at all cases proposed in this Damage of elevated tanks during earthquakes can jeopardize the supply of drinking water and causes significant economic losses. Therefore, seismic analysis of tanks containing liquids requires special consideration. Knowledge of liquid hydrodynamic pressures developed during an earthquake is important for tank design. This paper aims to verify the dynamic reaction of structural systems of spherical elevated steel tanks containing water, and determine the natural frequencies that contribute to the physical response, as well as seismic analysis of the tank. A three dimensional Finite Element Model was developed to identify the main parameters involved in this response for three different fullness ratio (0.00% , 53.30% and 71.11% ) using the ANSYS softwa
ISSN:1681-6900
2412-0758
2412-0758
DOI:10.30684/etj.v39i6.460