Adoption of knowledge-graph best development practices for scalable and optimized manufacturing processes
Using data analytics to properly extracting insights that are in-line to the enterprises strategic goals is crucial for the business sustainability. Developing the most fitting context as a knowledge graph that answer related businesses questions and queries at scale. Data analytics is an integral m...
Gespeichert in:
Veröffentlicht in: | MethodsX 2023-01, Vol.10, p.102124-102124, Article 102124 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using data analytics to properly extracting insights that are in-line to the enterprises strategic goals is crucial for the business sustainability. Developing the most fitting context as a knowledge graph that answer related businesses questions and queries at scale. Data analytics is an integral main part of smart manufacturing for monitoring the production processes and identifying the potentials for automated operations for improved manufacturing performance.
This paper reviews and investigates the best development practices to be followed for industrial enterprise knowledge-graph development that support smart manufacturing in the following aspects:•Decision for intelligent business processes, data collection from multiple sources, competitive advantage graph ontology, ensuring data quality, improved data analytics, human-friendly interaction, rapid and scalable enterprise's architectures.•Successful digital-transformation adoption for smart manufacturing as an enterprise knowledge-graph development with the capability to be transformed to data fabric supporting scalability of smart manufacturing processes in industrial enterprises.
[Display omitted] |
---|---|
ISSN: | 2215-0161 2215-0161 |
DOI: | 10.1016/j.mex.2023.102124 |