A functionally augmented carbohydrate utilization locus from herbivore gut microbiota fueled by dietary β-glucans

Gut microbiota members from the Bacteroidota phylum play a pivotal role in mammalian health and metabolism. They thrive in this diverse ecosystem due to their notable ability to cope with distinct recalcitrant dietary glycans via polysaccharide utilization loci (PULs). Our study reveals that a PUL f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPJ biofilms and microbiomes 2024-10, Vol.10 (1), p.105-13, Article 105
Hauptverfasser: Mandelli, Fernanda, Martins, Marcele Pandeló, Chinaglia, Mariana, Lima, Evandro Antonio de, Morais, Mariana Abrahão Bueno, Lima, Tatiani Brenelli, Cabral, Lucélia, Pirolla, Renan Augusto Siqueira, Fuzita, Felipe Jun, Paixão, Douglas Antônio Alvaredo, Andrade, Maxuel de Oliveira, Wolf, Lucia Daniela, Vieira, Plinio Salmazo, Persinoti, Gabriela Felix, Murakami, Mario Tyago
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gut microbiota members from the Bacteroidota phylum play a pivotal role in mammalian health and metabolism. They thrive in this diverse ecosystem due to their notable ability to cope with distinct recalcitrant dietary glycans via polysaccharide utilization loci (PULs). Our study reveals that a PUL from an herbivore gut bacterium belonging to the Bacteroidota phylum, with a gene composition similar to that in the human gut, exhibits extended functionality. While the human gut PUL targets mixed-linkage β-glucans specifically, the herbivore gut PUL also efficiently processes linear and substituted β-1,3-glucans. This gain of function emerges from molecular adaptations in recognition proteins and carbohydrate-active enzymes, including a β-glucosidase specialized for β(1,6)-glucosyl linkages, a typical substitution in β(1,3)-glucans. These findings broaden the existing model for non-cellulosic β-glucans utilization by gut bacteria, revealing an additional layer of functional and evolutionary complexity within the gut microbiota, beyond conventional gene insertions/deletions to intricate biochemical interactions.
ISSN:2055-5008
2055-5008
DOI:10.1038/s41522-024-00578-6