Structural Shape Optimization Based on Multi-Patch Weakly Singular IGABEM and Particle Swarm Optimization Algorithm in Two-Dimensional Elastostatics
In this paper, a multi-patch weakly singular isogeometric boundary element method (WSIGABEM) for two-dimensional elastostatics is proposed. Since the method is based on the weakly singular boundary integral equation, quadrature techniques, dedicated to the weakly singular and regular integrals, are...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2024-05, Vol.12 (10), p.1518 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a multi-patch weakly singular isogeometric boundary element method (WSIGABEM) for two-dimensional elastostatics is proposed. Since the method is based on the weakly singular boundary integral equation, quadrature techniques, dedicated to the weakly singular and regular integrals, are applied in the method. A new formula for the generation of collocation points is suggested to take full advantage of the multi-patch technique. The generated collocation points are essentially inside the patches without any correction. If the boundary conditions are assumed to be continuous in every patch, no collocation point lies on the discontinuous boundaries, thus simplifying the implementation. The multi-patch WSIGABEM is verified by simple examples with analytical solutions. The features of the present multi-patch WSIGABEM are investigated by comparison with the traditional IGABEM. Furthermore, the combination of the present multi-patch WSIGABEM and the particle swarm optimization algorithm results in a shape optimization method in two-dimensional elastostatics. By changing some specific control points and their weights, the shape optimizations of the fillet corner, the spanner, and the arch bridge are verified to be effective. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math12101518 |