Short-Term Power Load Forecasting Method Based on Improved Sparrow Search Algorithm, Variational Mode Decomposition, and Bidirectional Long Short-Term Memory Neural Network

A short-term power load forecasting method is proposed based on an improved Sparrow Search Algorithm (ISSA), Variational Mode Decomposition (VMD), and Bidirectional Long Short Term Memory (BiLSTM) neural network. First, the SSA is optimized by combining Tent chaotic mapping, reverse learning, and dy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2024-11, Vol.17 (21), p.5280
Hauptverfasser: Wen, Ming, Liu, Bo, Zhong, Hao, Yu, Zongchao, Chen, Changqing, Yang, Xian, Dai, Xueying, Chen, Lisi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A short-term power load forecasting method is proposed based on an improved Sparrow Search Algorithm (ISSA), Variational Mode Decomposition (VMD), and Bidirectional Long Short Term Memory (BiLSTM) neural network. First, the SSA is optimized by combining Tent chaotic mapping, reverse learning, and dynamic step adjustment strategy, and the VMD mode number and penalty factor are optimized by ISSA. Secondly, the initial load sequence is decomposed into several Intrinsic Mode Function (IMF) components using ISSA-VMD. The effective modal components are screened by Wasserstein Distance (WD) between IMF and the original signal probability density. Then, the effective modal components are reconstructed by the Improved Multi-scale Fast Sample Entropy (IMFSE) algorithm. Finally, the extracted features and IMF were input into the ISSA-BiLSTM model as input vectors for prediction.
ISSN:1996-1073
1996-1073
DOI:10.3390/en17215280