Preparation and Electrochemical Performance of Three-Dimensional Vertically Aligned Graphene by Unidirectional Freezing Method
Three-dimensional vertically aligned graphene (3DVAG) was prepared by a unidirectional freezing method, and its electrochemical performances were evaluated as electrode materials for zinc-ion hybrid supercapacitors (ZHSCs). The prepared 3DVAG has a vertically ordered channel structure with a diamete...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2022-01, Vol.27 (2), p.376 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Three-dimensional vertically aligned graphene (3DVAG) was prepared by a unidirectional freezing method, and its electrochemical performances were evaluated as electrode materials for zinc-ion hybrid supercapacitors (ZHSCs). The prepared 3DVAG has a vertically ordered channel structure with a diameter of about 20-30 μm and a length stretching about hundreds of microns. Compared with the random structure of reduced graphene oxide (3DrGO), the vertical structure of 3DVAG in a three-electrode system showed higher specific capacitance, faster ion diffusion, and better rate performance. The specific capacitance of 3DVAG reached 66.6 F·g
and the rate performance reached 92.2%. The constructed 3DVAG zinc-ion hybrid supercapacitor also showed excellent electrochemical performance. It showed good capacitance retention up to 94.6% after 3000 cycles at the current density of 2 A·g
. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules27020376 |