Internal analysis and optimization applied to parameter estimation under uncertainty

We present a methodology through exemplification to perform parameter estimation subject to possible factors of uncertainty. The underlying optimization problem is posed in the framework of the theory of interval-valued optimization. The implementation of numerical procedures required to achieve eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boletim da Sociedade Paranaense de Matemática 2018-04, Vol.36 (2), p.107-124
Hauptverfasser: Gallego-Posada, Jose Daniel, Puerta-Yepes, Maria Eugenia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a methodology through exemplification to perform parameter estimation subject to possible factors of uncertainty. The underlying optimization problem is posed in the framework of the theory of interval-valued optimization. The implementation of numerical procedures required to achieve efficient solutions implied the use of the $\ell_1$ norm instead of usual $\ell_2$ regression. Finally, an implementation using real data was performed, demonstrating the ability of interval analysis to encapsulate uncertainty while facing non-trivial parameter estimation problems.
ISSN:0037-8712
2175-1188
DOI:10.5269/bspm.v36i2.29309