Internal analysis and optimization applied to parameter estimation under uncertainty
We present a methodology through exemplification to perform parameter estimation subject to possible factors of uncertainty. The underlying optimization problem is posed in the framework of the theory of interval-valued optimization. The implementation of numerical procedures required to achieve eff...
Gespeichert in:
Veröffentlicht in: | Boletim da Sociedade Paranaense de Matemática 2018-04, Vol.36 (2), p.107-124 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a methodology through exemplification to perform parameter estimation subject to possible factors of uncertainty. The underlying optimization problem is posed in the framework of the theory of interval-valued optimization. The implementation of numerical procedures required to achieve efficient solutions implied the use of the $\ell_1$ norm instead of usual $\ell_2$ regression. Finally, an implementation using real data was performed, demonstrating the ability of interval analysis to encapsulate uncertainty while facing non-trivial parameter estimation problems. |
---|---|
ISSN: | 0037-8712 2175-1188 |
DOI: | 10.5269/bspm.v36i2.29309 |