Application of Induced Preorderings in Score Function-Based Method for Solving Decision-Making with Interval-Valued Fuzzy Soft Information
Ranking interval-valued fuzzy soft sets is an increasingly important research issue in decision making, and provides support for decision makers in order to select the optimal alternative under an uncertain environment. Currently, there are three interval-valued fuzzy soft set-based decision-making...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2021-07, Vol.9 (13), p.1575 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ranking interval-valued fuzzy soft sets is an increasingly important research issue in decision making, and provides support for decision makers in order to select the optimal alternative under an uncertain environment. Currently, there are three interval-valued fuzzy soft set-based decision-making algorithms in the literature. However, these algorithms are not able to overcome the issue of comparable alternatives and, in fact, might be ignored due to the lack of a comprehensive priority approach. In order to provide a partial solution to this problem, we present a group decision-making solution which is based on a preference relationship of interval-valued fuzzy soft information. Further, corresponding to each parameter, two crisp topological spaces, namely, lower topology and upper topology, are introduced based on the interval-valued fuzzy soft topology. Then, using the preorder relation on a topological space, a score function-based ranking system is also defined to design an adjustable multi-steps algorithm. Finally, some illustrative examples are given to compare the effectiveness of the present approach with some existing methods. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math9131575 |