Novel Approach to Phase-Sensitive Optical Time-Domain Reflectometry Response Analysis with Machine Learning Methods

This paper is dedicated to the investigation of the metrological properties of phase-sensitive reflectometric measurement systems, with a particular focus on addressing the non-uniformity of responses along optical fibers. The authors highlight challenges associated with the stochastic distribution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2024-03, Vol.24 (5), p.1656
Hauptverfasser: Yatseev, Vasily A, Butov, Oleg V, Pnev, Alexey B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is dedicated to the investigation of the metrological properties of phase-sensitive reflectometric measurement systems, with a particular focus on addressing the non-uniformity of responses along optical fibers. The authors highlight challenges associated with the stochastic distribution of Rayleigh reflectors in fiber optic systems and propose a methodology for assessing response non-uniformity using both cross-correlation algorithms and machine learning approaches, using chirped-reflectometry as an example. The experimental process involves simulating deformation impact by altering the light source's wavelength and utilizing a chirped-reflectometer to estimate response non-uniformity. This paper also includes a comparison of results obtained from cross-correlation and neural network-based algorithms, revealing that the latter offers more than 34% improvement in accuracy when measuring phase differences. In conclusion, the study demonstrates how this methodology effectively evaluates response non-uniformity along different sections of optical fibers.
ISSN:1424-8220
1424-8220
DOI:10.3390/s24051656