Oxygen Vacancies Engineering in Thick Semiconductor Films via Deep Ultraviolet Photoactivation for Selective and Sensitive Gas Sensing
Room‐temperature detection of volatile organic compounds in particle‐per‐billion concentrations is critical for the development of wearable and distributed sensor networks. However, sensitivity and selectivity are limited at low operating temperatures. Here, a strategy is proposed to substantially i...
Gespeichert in:
Veröffentlicht in: | Advanced electronic materials 2023-04, Vol.9 (4), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Room‐temperature detection of volatile organic compounds in particle‐per‐billion concentrations is critical for the development of wearable and distributed sensor networks. However, sensitivity and selectivity are limited at low operating temperatures. Here, a strategy is proposed to substantially improve the performance of semiconductor sensors. Tunable oxygen vacancies in thick 3D networks of metal oxide nanoparticles are engineered using deep ultraviolet photoactivation. High selectivity and sensitivity are achieved by optimizing the electronic structure and surface activity while preserving the 3D morphology. Cross‐sectional depth analysis reveals oxygen vacancies present at various depths (≈24% at a depth of 1.13 µm), with a uniform distribution throughout the thick films. This results in ≈58% increase in the sensitivity of ZnO to 20‐ppb ethanol at room temperature while ≈51% and 64% decrease in the response and recovery times, respectively. At an operating temperature of 150 °C, oxygen‐vacant nanostructures achieve a lower limit of detection of 2 ppb. Density functional theory analysis shows that inducing oxygen vacancies reduces activation energy for ethanol adsorption and dissociation, leading to improved sensing performance. This scalable approach has the potential for designing low‐power wearable chemical and bio‐sensors and tuning the activity and band structure of porous, thick oxide films for multiple applications.
The authors introduce oxygen vacancies in thick ultraporous semiconductor films by low‐power deep ultraviolet photoactivation. The approach is simple, cost‐effective, and applicable to various porous semiconductor thick films for catalytic applications. The authors demonstrate the high catalytic performance (lower limit of 10 ppb at room temperature) of the films for low‐power wearable medical devices for disease detection via breath analysis. |
---|---|
ISSN: | 2199-160X 2199-160X |
DOI: | 10.1002/aelm.202200905 |